**10EC077** 



M.Tech. Degree Examination, June 2012

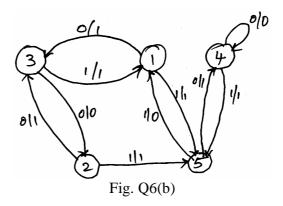
## **Synthesis and Optimization of Digital Circuits**

Time: 3 hrs.

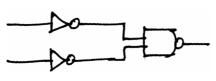
Max. Marks:100

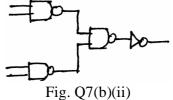
## Note: Answer any FIVE full questions.

| 1 | b.<br>с. | Explain the semi-custom design.(06 MarksDiscuss 'tractable' and 'intractable' problems encountered in design of microelectronic<br>circuits.(04 MarksWhat are pareto points? Explain the significance of pareto point, with an example. (06 Marks<br>Explain the algorithm steps involved in DIJKSTRA algorithm.(04 Marks                                                                                                                                                                                                |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | b.       | Explain the algorithm steps involved in bryantls reduction procedure(10 MarksConsider a function pair $f = (a + b)c$ ; $g = bcd$ . Compute ROBDD with variable orde(d, a, b, c). Also represent unique table.(06 MarksExplain the following terms with respect to graph theory.i) trailii) multi – graphiii) planar graphiv) bipartite graph.(04 Marks)                                                                                                                                                                  |
| 3 | b.       | Consider the following function :<br>$x_1 = (x + dx)$ ;<br>$u_1 = [u - (3 * x * u * dx) - (3 * y * dx)];$<br>$y_1 = (y + u * dx);$<br>$c = x_1 < a;$<br>Write a behavioral model, using silage. (08 Marks<br>Write a UDL/I behavioral model for finite state machine that recognizes two or more<br>consecutive 1's in an input data stream. (06 Marks<br>Explain the optimization techniques. (06 Marks)                                                                                                                |
| 4 | b.<br>с. | What are tautology? Give set of rules for simplifying the recursive procedure.(06 MarksConsider the function $f = ab + ac + ab' c' + a'$ . Represent this function, using positional cube<br>notation. Verify the above function for tautology.(04 MarksGive ESPRESSO minimizer algorithm.(06 MarksConsider the function :<br>$(\alpha) (\alpha + \beta) (\beta + \gamma) (\gamma + \delta) (\delta) = 1$ (06 MarksRepresent prime implicant table. Solve the above function by applying Petrick's method.<br>(04 Marks) |
| 5 | a.<br>b. | Explain the Algebraic division, with an example. Write the pseudo code for the method.<br>(06 Marks)<br>Find the minimum cover for the following function, using exact logic minimization<br>algorithm $f = \Sigma m_0, m_2, m_4, m_6, m_8, m_{10} m_5, m_7, m_9, m_{11}, m_{13}$                                                                                                                                                                                                                                        |
|   |          | Represent the minimal cover on three dimensional cube. (10 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                         |


c. Give four major steps of expand procedure of logic minimization. (04 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.


## 10EC077


(10 Marks)

- **6** a. Explain the different types of finite state machine decompositions.
  - b. For the finite state machine Fig. Q6(b), obtain the minimum state diagram. (10 Marks)



- 7 a. Explain Hu's algorithm.
  - b. For the given cell library in Fig. 7(b)(i) and Fig. Q7(b)(ii). Write pattern arrays and pattern strings. (04 Marks)





- Fig. Q7(b)(i) c. Explain loop folding.
- d. Explain ALAP scheduling under latency constraints.
- **8** Write short notes on :
  - a. Anti fuse based FPGA
  - b. TREE BASED covering
  - c. LEFT edge algorithm
  - d. Boolean relation minimization.

(20 Marks)

\* \* \* \* \*

(06 Marks) (04 Marks)

(06 Marks)